Probabilités

I. Expérience aléatoire, événement, probabilité.

A. Expérience aléatoire.

Vocabulaire:

- Une expérience aléatoire est une expérience dont les résultats (ou issues) sont soumis au hasard.
- On appelle univers, Ω , l'ensemble de toutes les issues.
- Un événement est un sous-ensemble de Ω , c'est à dire qu'il est constitué d'aucune, une ou plusieurs issues.

B. Événements.

Définition:

- Des événements A et B sont incompatibles si leur intersection est vide, ils n'ont alors pas d'issue en commun, c'est à dire $A \cap B = \emptyset$.
- Des événements A et B sont contraires si il sont incompatibles et si leur réunion forme Ω . On note alors $B = \overline{A}$.

Définition:

Soit $n \in \mathbb{N}$, $n \ge 2$. Soient les événements A_1, \ldots, A_n . Alors ils forment un système complet d'événements si :

- les événements sont deux à deux incompatibles,
- leur réunion vaut Ω .

On dit aussi que les événements forment une partition de l'univers.

C. Probabilités.

Définition:

Une probabilité P est une fonction définie par $P: \begin{cases} T_{\Omega} \rightarrow [0;1] \\ A \mapsto P(A) \end{cases}$ où T_{Ω} est un ensemble d'événements de Ω bien choisi, telle que :

- $P(\Omega)=1$,
- Pour tout événement A et B incompatibles: $P(A \cup B) = P(A) + P(B)$.

Définition:

- Un événement dont la probabilité est égale à 0 est appelé événement impossible.
- Un événement dont la probabilité est égale à 1 est appelé événement certain.
- Si tous les événements élémentaires ont la même probabilité, on dit qu'il y a équiprobabilité.

D. Exemple.

Une des difficultés lorsqu'on fait intervenir des probabilités est de trouver un modèle adapté à la situation sachant que l'estimation des probabilités se fait à la dernière étape.

Expérience aléatoire:

Dans un jeu de 32 cartes, on note tire une carte au hasard et on note sa valeur et sa couleur. Une issue est par exemple (10 ;Cœur) ou notée encore 10 de Cœur.

Événement:

10C: « la carte tirée est le 10 de Coeur ». On a $10C = \{(10 ; Coeur)\}$. C'est un événement élémentaire.

R: « la carte tirée est un roi ». On a $R=\{(R;Pique);(R;Cœur);(R;Carreau);(R;Trèfle)\}$. C'est un événement constitué de 4 issues.

Ce sont deux événements incompatibles mais pas contraires.

Probabilité:

Si on se place en situation d'équiprobabilité, $P(10C) = \frac{1}{32}$

II. Calculs et premières propriétés.

Propriété:

Soient A et B deux événements :

- 1. $P(\bar{A}) + P(A) = 1$,
- 2. $P(\emptyset)=0$,
- 3. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 4. Si $A \subseteq B$, $P(A) \leq P(B)$.

Démonstration:

- 1. $P(\bar{A})+P(A)=P(\bar{A}\cup A)=P(\Omega)=1$ car \bar{A} et A sont incompatibles.
- $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$, de plus ces trois événements sont incompatibles.

$$A = (A \setminus B) \cup (A \cap B)$$
$$B = (B \setminus A) \cup (A \cap B)$$

D'où
$$P(A)=P(A \setminus B)+P(A \cap B)$$

 $P(B)=P(B \setminus A)+P(A \cap B)$

$$P(A) = P(A \setminus B) + P(A \cap B)$$

$$P(B) = P(B \setminus A) + P(A \cap B)$$

$$P(A \cup B) = P(A \setminus B) + P(A \cap B) + P(B \setminus A)$$

$$= P(A) - P(A \cap B) + P(A \cap B) + P(B) - P(A \cap B)$$

$$= P(A) + P(B) - P(A \cap B)$$

Propriété:

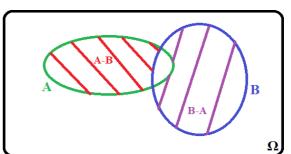
Si les événements A_1, \ldots, A_n sont deux-à-deux incompatibles, alors :

$$P\left(\bigcup_{k=0}^{n} A_{k}\right) = P\left(A_{1} \cup ... \cup A_{n}\right) = P\left(A_{1}\right) + ... + P\left(A_{n}\right) = \sum_{k=0}^{n} P\left(A_{k}\right).$$

Démonstration: Utilisons une récurrence sur $n \in \mathbb{N}$, $n \ge 2$.

- Initialisation : $P(A_1 \cup A_2) = P(A_1) + P(A_2)$ par définition d'une probabilité.
- Hérédité: supposons que l'égalité soit vraie pour un certain rang $n \ge 2$.

$$P\left(\bigcup_{k=0}^{n+1} A_{k}\right) = P\left(\bigcup_{k=0}^{n} A_{k} \cup A_{n+1}\right) = P\left(\bigcup_{k=0}^{n} A_{k}\right) + P\left(A_{n+1}\right) = \sum_{k=0}^{n} P\left(A_{k}\right) + P\left(A_{n+1}\right) = \sum_{k=0}^{n+1} P\left(A_{n+1}\right) = \sum_{k=0}^{n+1} P\left(A_{k}\right) + P\left(A_{n+1}\right) = \sum_{k=0}^{n+1} P\left(A_{n+1}\right)$$



Car $\bigcup_{k=0}^{n} A_k$ et A_{n+1} sont incompatibles.

Propriété:

Soit A un événement. En cas d'équiprobabilité, on a :

$$P(A) = \frac{nombre\ d'\ issues\ favorables}{nombre\ total\ d'\ issues} = \frac{card\ A}{card\ \Omega}$$
.

<u>Démonstration</u>: On applique la propriété ci dessus aux événements élémentaires constituant A.

Propriété: (formule des probabilités totales)

Soit $n \in \mathbb{N}$, $n \ge 2$. Si les événements A_1, \ldots, A_n forment un système complet d'événements. Alors

pour tout événement B, on a :
$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) .$$

<u>Démonstration</u>: Il suffit de remarquer que $B = B \cap \Omega = B \cap (\bigcup_{k=0}^{n} A_k) = \bigcup_{k=0}^{n} (B \cap A_k)$, puis que ces événements sont deux à deux incompatibles.

Exemple: Reprenons l'exemple ci-dessus.

- Pique, Coeur, Carreau, Trèfle forme un système complet d'événements,
- $P(Coeur) = \frac{card\ Coeur}{card\ \Omega} = \frac{8}{32} = \frac{1}{4}$,
- $P(R) = P(R, Pique) + P(R, Coeur) + P(R, Carreau) + P(R, Trèfle) = \frac{4 \times 1}{32} = \frac{1}{8}$.

III. Indépendance et probabilités conditionnelles.

Définition:

Soit A et B deux événements. On dit que A et B sont indépendants si $P(A \cap B) = P(A) \times P(B)$.

Exemple: Reprenons l'exemple ci-dessus.

$$P(Coeur \cap R) = \frac{1}{32}$$
, et $P(Coeur) \times P(R) = \frac{8}{32} \times \frac{4}{32} = \frac{1}{32}$.

Donc les événements Cœur et R sont indépendants (mais attention, ils ne sont pas incompatibles).

Définition:

Soit A et B deux événements tels que P(B)>0.

On appelle probabilité conditionnelle de A sachant B le nombre noté P_B(A) (ou P(A|B)) :

$$P_{B}(A) = \frac{P(A \cap B)}{P(B)} .$$

Exemple: Reprenons l'exemple ci-dessus $P_V(Coeur) = \frac{P(V \cap Coeur)}{P(V)} = \frac{\frac{1}{32}}{\frac{4}{32}} = \frac{1}{4}$.

Propriété: Dans les conditions précédentes, P_B définie bien une nouvelle probabilité.

Démonstration:

- Soit un événement A, $P_B(A)$ est à valeur dans [0;1],
- $P_B(\Omega)=1$,
- Soient deux événements A et B incompatibles: $P(A \cup B) = P(A) + P(B)$.

Proposition:

Soit A et B deux événements tels que P(B) > 0.

A et B sont indépendants si et seulement si $P_{B}(A) = P(A) \Leftrightarrow P_{A}(B) = P(B)$.

Exercice:

On considère deux gènes a et b tel que la redondance de l'un d'entre eux (c'est-à-dire le fait de posséder aa ou bb) entraîne l'acquisition d'un caractère C. Anselme et Colette possèdent chacun la combinaison ab et attendent un enfant : il lui transmettrons chacun et indépendamment, soit le gène a, soit le gène b, avec la même probabilité (c'est-à-dire 1/2).

On considère les événements :

- A = « Colette transmet le gène a »,
- B = « Anselme transmet le gène b »,
- C = « L'enfant présente le caractère C ».
- → Montrer que les événements A, B et C sont deux-à-deux indépendants.
- \rightarrow Montrer que $P(A \cap B \cap C) \neq P(A) \times P(B) \times P(C)$.

Propriété: (Formule de Bayes simplifiée)

Soit A et B deux événements tels que P(A) > 0 et P(B) > 0, alors $P_B(A) = \frac{P_A(B) \times P(A)}{P(B)}$

Démonstration:

On a
$$P_A(B) = \frac{P(A \cap B)}{P(B)}$$
, donc $P(A \cap B) = P_A(B) \times P(B)$,

d'où
$$P_B(A) = \frac{P(B \cap A)}{P(B)} = \frac{P_A(B) \times P(A)}{P(B)}$$

Exercice:

- 60% des étudiants qui vont en TD obtiennent l'examen ;
- 10% des étudiants qui ne vont pas en TD obtiennent l'examen ;
- 70% des étudiants vont en TD.
- → Quelle proportion des lauréats a séché les cours ?

Propriété:

Soient A et B deux événements tels que $A \subseteq B$ et $P(B) \neq 0$, alors : $P(A) = P(B) \times P_B(A)$.

Démonstration:

Comme
$$A \subseteq B$$
, on a $A \cap B = A$, d'où $P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)}$.

Exercice:

Chez les papous, il y a les papous à poux et les papous pas à poux. La probabilité pour qu'un papou ait des poux vaut 0,1.

De plus, chez les papous, il y a les papous papas et les papous pas papas. La probabilité pour qu'un papou à poux soit papa vaut 0,6.

Or, chez les poux, il y a les poux papas et les poux pas papas : la probabilité pour qu'un papou à poux possède au moins un pou papa est de 0,8.

Enfin chez les papous pas papas à poux, la probabilité qu'aucun des poux ne soit papa est de 0,1.

→ On tire au hasard un papou. Quelle est la probabilité pour que ce soit un papa papou à poux papa ?

IV. Variables aléatoires discrètes.

A. Lois

Définition:

Une variable aléatoire réelle X est une fonction définie sur $T(\Omega)$ et à valeur dans \mathbb{R} .

On note X=k, l'événement comprenant toutes les issues dont à l'image par X est égale à k.

On note $X \le k$, l'événement comprenant toutes les issues dont l'image par X est inférieure ou égale à k. On définit de même les événements $X \ge k$, $k \le X \le k'$.

Remarque:

Dans le cas où Ω est un ensemble fini (de cardinal $m \in \mathbb{N}^*$), alors $T(\Omega)$ est l'ensemble des parties de Ω c'est à dire l'ensemble tous les événements contenant aucune, une ou plusieurs issues. Alors $T(\Omega)$ est fini aussi et $card(T(\Omega))=2^m$. Dans ce cas, la variable aléatoire ne prend qu'un nombre fini de valeurs.

Définition: (Loi d'une variable aléatoire discrète)

Soit X une variable aléatoire prenant un nombre fini de valeurs $x_1, x_2, ..., x_n$ ($n \in \mathbb{N}^*$).

La loi de X est la donnée de $p_i = P(X = x_i)$ pour tout $i \in [1, ..., n]$.

Exemple: (Lois classiques)

Nom	Paramètre(s)	Support	$\mathbb{P}(X=k)$	Exemple(s)
Loi de Bernoulli	$p \in]0,1[$	{0,1}	$\mathbb{P}(X=1)=p$	Tirage dans une urne
			$\mathbb{P}(X=0) = 1 - p$	pile ou face biaisé.
Loi binômiale	$p \in]0,1[\text{ et } n \in \mathbb{N}^*$	$\{0,\ldots,n\}$	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$	Nombre de succès pour n tirages avec remise.
Loi géométrique	$p \in]0,1[$	N*	$\mathbb{P}(X=k) = p(1-p)^{k-1}$	Temps du premier suc- cès pour des tirages avec remise.
Loi uniforme	Un ensemble E fini de cardinal n	E	$\mathbb{P}(X=k) = \frac{1}{n}$	Phénomènes équiprobables.

Remarque:

Pour montrer que ce sont des lois de probabilité, il suffit de vérifier (hors-programme) que la somme des P(X=k) pour k dans le support de la loi vaut 1.

Exemple:

On lance un dé bien équilibré à 6 faces. Quelle est la probabilité d'obtenir 2 ou plus pour la première fois au 4^e lancé ?

B. Espérance, Variance

Définition:

Soit X une variable aléatoire prenant un nombre fini de valeurs x_1, x_2, \dots, x_n ($n \in \mathbb{N}^*$).

Son espérance, notée E(X) est le nombre $E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$.

Exemple:

Soit X la variable aléatoire discrète de loi uniforme sur $\{0, ..., n\}$ où $n \in \mathbb{N}^*$.

$$E(X) = \sum_{i=0}^{n} x_{i} P(X = x_{i}) = \sum_{i=0}^{n} i \times \frac{1}{n+1} = \frac{1}{n+1} \times \sum_{i=0}^{n} i = \frac{1}{n+1} \times \frac{n(n+1)}{2} = \frac{n}{2}$$

Propriété:

Soient $a, b \in \mathbb{R}$ et X une v.a., alors E(aX+b)=aE(X)+b.

Démonstration:

Définition:

Soit X une variable aléatoire . Sa variance, notée V(X) est le nombre $V(X) = E[(X - E(X))^2]$.

Théorème: (de König-Huygens) $V(X) = E(X^2) - (E(X))^2$.

Démonstration:

Démontrer le théorème.

<u>Propriété</u>:

- Soit X une v.a., alors $V(X) \ge 0$.
- Soit $a, b \in \mathbb{R}$ et X une v.a., alors $V(aX+b)=a^2V(X)$.

Propriété:

Soient X et Y deux v.a. indépendantes.

- (i) E(XY)=E(X)E(Y);
- (ii) V(X+Y)=V(X)+V(Y)

Exemple: (Lois classiques)

Nom	Paramètre(s)	Espérance	Variance
Loi de Bernoulli	$p \in]0,1[$	p	p(1-p)
Loi binômiale	$p \in]0,1[$ et $n \in \mathbb{N}^*$	np	np(1-p)
Loi géométrique	$p \in]0,1[$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Loi uniforme	Un ensemble E fini de cardinal n	$rac{n}{2}$	$\frac{n(n+2)}{12}$

V. Variables aléatoires continues

A. Lois

Remarque:

Dans le cas où Ω est une partie de \mathbb{R} , alors $T(\Omega)$ est l'ensemble des intervalles I de \mathbb{R} du type [a;b] ou $]-\infty;b]$ ou $[a;+\infty[$ ou $]-\infty;+\infty[$.

Définition:

On dit qu'une fonction f est une densité si f est définie, continue et positive sur un intervalle I de

IR et telle que
$$\int_{I} f_{(x)} dx = 1$$
.

Si X est une variable aléatoire continue de densité f sur I avec $[a,b] \subset I$, la probabilité de l'événement $\{X \in [a,b]\}$ est égal à l'aire sous la courbe de f sur [a,b], soit :

$$P(X \in [a,b]) = \int_a^b f_{(x)} dx.$$

Exemple: Soit $f_{(x)} = \frac{1}{8}x$ définie sur [0, 2].

- Montrer que f est une densité.
- Calculer $P(X \in [0,5;1])$.

Remarque:

Dans le cas d'une variable aléatoire continue, on a :

$$P(X=a) = \int_{a}^{a} f_{(x)} dx = 0 \qquad \text{et} \qquad P(X \le a) = P(X \le a)$$

Notation:

 1_A s'appelle la fonction indicatrice de A. Elle est définie par 1_A : $\begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto \begin{cases} 1 \sin x \in A \\ 0 \sin x \notin A \end{cases} \end{cases}$

Exemple: (Lois classiques)

Nom	Paramètre(s)	Support	Densité	Exemple(s)
Loi uniforme	$a, b \in \mathbb{R}, \ a < b$	[a,b]	$f(x) = \frac{1}{b-a} \mathbb{1}_{[a,b]}(x)$	Phénomènes équiprobables
Loi exponentielle	$\lambda \in \mathbb{R}_+^*$	\mathbb{R}_{+}	$f(x) = \lambda e^{-\lambda x} \mathbb{1}_{\mathbb{R}_+}(x)$	Durée de vie.
Loi normale	$m \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+^*$	\mathbb{R}	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	Modéliser des petites erreurs ou variations aléatoires.

Remarque:

On vérifie (hors-programme) que l'intégrale de chaque densité sur R vaut 1.

B. Espérance, Variance

Définition:

Soit X une variable aléatoire continue ayant pour densité f sur l'intervalle [a, b] (avec a < b). Son espérance, notée E(X) est le nombre : $E(X) = \int_{a}^{b} x \times f_{(x)} dx$.

Remarque:

La définition de la variance reste la même que pour les variables aléatoires discrètes.

Les différentes propriétés sont les mêmes.

Démonstration:

Démontrer le théorème de König-Huygens dans le cadre d'une variable aléatoire continue.

Exemple: (Lois classiques)

Nom	Paramètre(s)	Espérance	Variance
Loi uniforme	$a,b \in \mathbb{R}, a < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Loi exponentielle	$\lambda \in \mathbb{R}_+^*$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Loi normale	$m \in \mathbb{R}, \ \sigma^2 \in \mathbb{R}_+^*$	m	σ^2

VI. Exercices

Exercice 1:

Soit X une variable aléatoire réelle suivant une loi exponentielle de paramètre λ .

Montrer que pour tout $s, t \in \mathbb{R}^+$, $P_{X>t}(X>s+t)=P(X>s)$. Cette propriété se traduit en disant que la variable aléatoire X est sans mémoire.

Exercice 2:

Les 100 passagers, d'un avion de 100 places, entrent dans l'appareil l'un après l'autre, dans l'ordre du numéro de leur carte d'embarquement (ex : le 4ème passager a réservé le siège numéro 4). Ils ont chacun une place réservée, mais la première personne à monter dans l'avion est une vieille folle qui s'assoit sur une place choisie au hasard de façon équiprobable.

Puis, chacun des autres, à son tour, va s'asseoir à sa place réservée si elle est encore libre ou, dans le cas contraire, s'installe au hasard et de façon équiprobable sur n'importe laquelle des places restantes.

→ Quelle est la probabilité que le 100ème passager se soit finalement assis à sa place réservée ?

Indication : observer les cas n=100 et n=1 puis n=99 , n=98 ,... et montrer, par récurrence forte, que cette probabilité vaut $\frac{1}{2}$ (n étant la place choisie par la vielle dame).

Exercice 3:

Soit n un entier naturel non nul. Dans un sac, on place 2n+1 boules indiscernables au toucher et numérotées $0, 1, 2, \ldots, 2n$. On vide alors progressivement le sac jusqu'à n'y laisser qu'une seule boule, selon le protocole suivant :

- on tire trois boules simultanément ;
- si les trois boules tirées ont pour numéros a, b et c, avec a < b < c, on élimine les boules de numéros a et c et on replace dans le sac la boule de numéro b;
- on recommence les opérations précédentes.

Au bout de n tirages, il ne reste plus qu'une seule boule, et on note D_n son numéro. Pour tout entier k, on note $P(D_n=k)$ la probabilité que la dernière boule restant dans le sac soit celle de numéro k.

1.

- a) Déterminer la loi de la v.a. D_1 .
- b) Déterminer la loi de la v.a. D_2 .
- 2. Déterminer $P(D_n=0)$ et $P(D_n=2n)$.
- 3. Déterminer $P(D_n=1)$ en fonction de n.
- 4. Soit *i* un entier tel que $0 \le i \le 2n$. Pourquoi a-t-on $P(D_n = i) = P(D_n = 2n i)$?
- 5. Calculer l'espérance de la v.a. D_n en fonction de n.

Exercice 4:

Un concierge rentre d'une soirée. Il dispose de clefs dont une seule ouvre la porte de son domicile, mais il ne sait plus laquelle.

- 1. Il essaie les clefs les unes après les autres en éliminant après chaque essai la clef qui n'a pas convenu. Trouver le nombre moyen d'essais nécessaires pour trouver la bonne clef.
- 2. En réalité, la soirée était bien arrosée et après chaque essai, le concierge remet la clef essayée dans le trousseau. Trouver le nombre moyen d'essais nécessaires pour trouver la bonne clef.